Significant in-medium η' mass modification in $\sqrt{s_{nn}} = 200$ GeV Au+Au collisions

R. Vértesi^a, T. Csörgő^{a,b}, J. Sziklai^a

^a MTA KFKI RMKI H-1525 Budapest, P.O.Box 49, Hungary

b Dept. Physics, Harvard University
17 Oxford Street, Cambridge, MA 02138, USA

Contact e-mail: vertesi@rmki.kfki.hu

In high energy heavy ion collisions, a hot and dense medium is created, where the $U_A(1)$ or chiral symmetry may temporarily be restored [1-3]. As a consequence, the mass of the η' mesons may significantly be reduced, and the abundancy of η' mesons at low p_T may be enhanced by more than a factor of 10. The intercept parameter λ of the charged pion Bose Einstein Correlations provides a sensitive observable of the enhanced η' abundancy [4]. PHENIX and STAR data on $\lambda(m_T)$ were analysed [5,6], using extensive Monte Carlo simulations based on six popular models for hadronic abundances. In-medium η' mass $m_{\eta'}^*$ and the inverse slope parameter B^{-1} of the η' spectra were varied in small steps to obtain a χ^2 map, while other freezeout and flow parameters were taken from PHENIX measurements.

The best simultaneous description of STAR and PHENIX data is achieved with an η' mass that is dramatically reduced from 958 MeV to 330 MeV in the medium created in central Au+Au collisions at RHIC. Based on the combined STAR and PHENIX data, and from the systematic investigation of various resonance abundances and model parameters [7], we conclude that the mass of η' meson is reduced by more than 200 MeV in central Au+Au reactions, at the 99.9 % confidence level. A similar analysis of NA44 S+Pb data at top CERN SPS energies provided no evidence of in-medium η' mass modification.

Our results should revitalize theoretical interest in other signatures of partial $U_A(1)$ and chiral symmetry restoration in heavy ion reactions and also should be cross-checked against other observables like the enhancement of low-mass dileptions in the same reactions. Further, more detailed and more precise experimental data are needed on the intercept parameter of Bose-Einstein correlations of pions at low p_T at various bombarding energies, system sizes and centralities to establish the onset of partial $U_A(1)$ symmetry restoration.

References

- [1] T. Kunihiro, Phys. Lett. **B219** 363 (1989); ibid. **B245** 687(E) (1990).
- [2] J. Kapusta, D. Kharzeev and L. McLerran, Phys. Rev. **D53** 5028 (1996).
- [3] Z. Huang and X.-N. Wang, Phys. Rev. **D53** 5034 (1996).
- [4] S. Vance, T. Csörgő and D. Kharzeev, Phys. Rev. Lett. 81 2205 (1998).
- [5] S. Adler *et al.* [PHENIX Collaboration], Phys. Rev. Lett. **93** 152302 (2004).
- [6] J. Adams et al. [STAR Collaboration] Phys. Rev. C71 044906 (2005).
- [7] http://www.rmki.kfki.hu/~vertesi/etap_bec